1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
|
#[macro_use]
mod error;
mod camera;
mod geometry;
mod image;
mod material;
mod ray;
mod scene;
mod util;
mod vec3;
use std::{
borrow::Borrow,
sync::{Arc, Mutex, RwLock},
time::{Duration, Instant},
vec::Vec,
};
use material::{lambertian::Lambertian, metal::Metal, Material};
use minifb::{Key, Window, WindowOptions};
use rayon::prelude::*;
use vec3::Color;
use crate::{
camera::Camera, error::TracerError, geometry::sphere::Sphere, geometry::Hittable, image::Image,
ray::Ray, scene::Scene, util::random_double, vec3::Vec3,
};
fn ray_color(scene: &dyn Hittable, ray: &Ray, depth: usize) -> Vec3 {
if depth == 0 {
return Vec3::default();
}
if let Some(rec) = scene.hit(ray, 0.001, std::f64::INFINITY) {
if let Some((scattered, attenuation)) = rec.material.scatter(ray, &rec) {
return attenuation * ray_color(scene, &scattered, depth - 1);
}
return Color::default();
//let target = rec.point + random_in_hemisphere(&rec.normal);
//let target = rec.point + rec.normal + random_unit_vector();
//return 0.5 * ray_color(scene, &Ray::new(rec.point, target - rec.point), depth - 1);
//return hit_record.color;
//return 0.5 * (hit_record.normal + Vec3::new(1.0, 1.0, 1.0));
}
// TODO: make sky part of scene.
// Sky
let unit_direction = ray.direction().unit_vector();
let t = 0.5 * (unit_direction.y() + 1.0);
(1.0 - t) * Vec3::new(1.0, 1.0, 1.0) + t * Vec3::new(0.5, 0.7, 1.0)
}
fn flush(
row: usize,
width: usize,
start: usize,
count: usize,
samples: usize,
source: &[Vec3],
dest: &RwLock<Vec<u32>>,
) {
let mut buf = dest
.write()
.expect("Failed to get write guard when flushing data.");
for i in 0..count {
buf[row * width + start + i] = source[start + i].scale_sqrt(samples).as_color();
}
}
fn raytrace(
buffer: &RwLock<Vec<u32>>,
scene: &dyn Hittable,
camera: &Camera,
image: &Image,
row: usize,
max_depth: usize,
) {
let mut now = Instant::now();
let flush_delay = Duration::from_millis(50 + ((random_double() * 2000.0) as u64));
let mut flush_start: usize = 0;
let mut colors: Vec<Vec3> = vec![Vec3::default(); image.width as usize];
for i in 0..colors.len() {
for _ in 0..image.samples_per_pixel {
let u: f64 = (i as f64 + random_double()) / (image.width - 1) as f64;
let v: f64 = (row as f64 + random_double()) / (image.height - 1) as f64;
colors[i].add(ray_color(scene, &camera.get_ray(u, v), max_depth));
}
// Update the screen buffer every now and again.
if now.elapsed() > flush_delay {
now = Instant::now();
flush(
row,
image.width,
flush_start,
i - flush_start,
image.samples_per_pixel,
colors.as_slice(),
buffer,
);
flush_start = i;
}
}
// Flush last part of the buffer.
flush(
row,
image.width,
flush_start,
colors.len() - flush_start,
image.samples_per_pixel,
colors.as_slice(),
buffer,
);
}
type Data = (Arc<RwLock<Vec<u32>>>, Arc<Camera>, Arc<Image>, usize);
fn render(
buffer: Arc<RwLock<Vec<u32>>>,
camera: Arc<Camera>,
image: Arc<Image>,
scene: Box<dyn Hittable>,
max_depth: usize,
) {
let scene: &(dyn Hittable) = scene.borrow();
let v: Vec<Data> = (0..image.height)
.map(|row| {
(
Arc::clone(&buffer),
Arc::clone(&camera),
Arc::clone(&image),
row,
)
})
.collect();
v.par_iter().for_each(|(buf, camera, image, row)| {
raytrace(buf, scene, camera, image, *row, max_depth);
});
}
type SharedMaterial = Arc<Box<dyn Material>>;
fn create_scene() -> Scene {
let mut scene = Scene::new();
let material_ground: SharedMaterial =
Arc::new(Box::new(Lambertian::new(Color::new(0.8, 0.8, 0.0))));
let material_center: SharedMaterial =
Arc::new(Box::new(Lambertian::new(Color::new(0.7, 0.3, 0.3))));
let material_left: SharedMaterial =
Arc::new(Box::new(Metal::new(Color::new(0.8, 0.8, 0.8), 0.3)));
let material_right: SharedMaterial =
Arc::new(Box::new(Metal::new(Color::new(0.8, 0.6, 0.2), 0.1)));
scene.add(Box::new(Sphere::new(
Vec3::new(0.0, -100.5, -1.0),
100.0,
Arc::clone(&material_ground),
)));
scene.add(Box::new(Sphere::new(
Vec3::new(0.0, 0.0, -1.0),
0.5,
Arc::clone(&material_center),
)));
scene.add(Box::new(Sphere::new(
Vec3::new(-1.0, 0.0, -1.0),
0.5,
Arc::clone(&material_left),
)));
scene.add(Box::new(Sphere::new(
Vec3::new(1.0, 0.0, -1.0),
0.5,
Arc::clone(&material_right),
)));
scene
}
fn run(
aspect_ratio: f64,
screen_width: usize,
samples: usize,
max_depth: usize,
) -> Result<(), TracerError> {
let image = Arc::new(image::Image::new(aspect_ratio, screen_width, samples));
let camera = Arc::new(camera::Camera::new(&image, 2.0, 1.0));
let scene: Box<dyn Hittable> = Box::new(create_scene());
let screen_buffer: Arc<RwLock<Vec<u32>>> =
Arc::new(RwLock::new(vec![0; image.width * image.height]));
let window_res: Arc<Mutex<Result<(), TracerError>>> = Arc::new(Mutex::new(Ok(())));
rayon::scope(|s| {
s.spawn(|_| {
let render_time = Instant::now();
render(
Arc::clone(&screen_buffer),
camera,
Arc::clone(&image),
scene,
max_depth,
);
println!(
"It took {} seconds to render the image.",
Instant::now().duration_since(render_time).as_secs()
);
});
s.spawn(|_| {
let result = Window::new(
"racer-tracer",
image.width,
image.height,
WindowOptions::default(),
)
.map_err(|e| TracerError::FailedToCreateWindow(e.to_string()))
.map(|mut window| {
window.limit_update_rate(Some(std::time::Duration::from_micros(16600)));
window
})
.and_then(|mut window| {
while window.is_open() && !window.is_key_down(Key::Escape) {
// Sleep a bit to not hog the lock on the buffer all the time.
std::thread::sleep(std::time::Duration::from_millis(100));
screen_buffer
.read()
.map_err(|e| TracerError::FailedToUpdateWindow(e.to_string()))
.and_then(|buf| {
window
.update_with_buffer(&buf, image.width, image.height)
.map_err(|e| TracerError::FailedToUpdateWindow(e.to_string()))
})?
}
Ok(())
});
if result.is_err() {
let mut a = window_res.lock().expect("Failed to get result lock.");
*a = result;
}
});
});
let res = (window_res.lock().expect("Failed to get result lock.")).clone();
res
}
fn main() {
if let Err(e) = run(16.0 / 9.0, 1200, 1000, 50) {
eprintln!("{}", e);
std::process::exit(e.into())
}
}
|